Side channel attack an approach based on machine learning

L. LERMAN & G. BONTEMPI & O. MARKOWITCH

Université Libre de Bruxelles Faculty of Sciences Department of Computer Sciences Machine Learning Group & Cryptography and Security Service

February 24, 2011

Context

Context

Cryptography is used since a long time for confidentiality purposes

- Mobile phones
- Banks
- Cars
- Government

Side channel attacks

Reduction in cryptography security in real situation Possibility to find the secret key when we focalize on a side channel

- Timing attack (Kocher 1996)
- Electromagnetic attack (Gandolfi, Mourtel & Olivier 2001)
- Power monitoring attack (Kocher, Jaffe & Jun 1999)

Cryptanalysis

Side channel attacks

Power monitoring attack

Notations

Trace (T) = power consumption, in volts, during an encryption (multidimensional problem)

$$O_i = i^{th} \text{ key}$$

$$O_i = i^{th}$$
 key $O_{ck} =$ correct key

Problem

if we have 2^{56} possible values for a key (encoded on 56 bits), do we have 2^{56} sub-models ?

No! We can create two sub-models per bit Each one linked to a value of a bit

Pros & cons

Pros

- Efficiency in the attack
- Requires only one trace to predict a key
- No knowledge about the plaintext
- No knowledge about the cryptographic schema (e.g. 3DES)
- Theoretically it takes all the information in a trace

Pros & cons

Cons

- Access is needed to the cryptographic device
- Attack specific to a cryptographic device
- Assumption about the Gaussianity of data

Question

When considering power consumption analysis, can we design an attack which is more efficient than the template based DPA?

Possible answer

Interdisciplinary combination

Power analysis attack associated with machine learning

Machine learning

Machine learning

Machine learning

Machine learning

Machine learning

Motivations & disadvantages

Motivations

- Few applications of machine learning to cryptanalysis
- Feasible in practice
- Possibility of avoiding the assumption on the Gaussianity of data
- Reduction of the dimensionality
- Availability of several off-the-shelf algorithms of machine learning

Question

Motivation of the combination

Motivations & disadvantages

Disadvantages

- Worse than template Based DPA if traces follow a parametric Gaussian distribution
- Often seen as a black box

Context

Implementation of the attack

Implementation done thanks to the help of Atos Worldline (Service Data Encryption Peripheral (DEP) , Belgium)

Context

Cryptographic device

Cryptographic device: 3DES on a Xilinx SPARTAN XC3s5000 24 bytes key (three distinct 56 bit keys)

Collection of data

- 400 traces T_i per each key O_i attacked (N = 400)
- Encrypted message is constant and random.
- Noise reduction: $T_j = \frac{1}{N} \sum_{i=1}^{N} T_i$
- One T_j per each key O_j

- Implementation of the attack
 - Collection of data

Collection of data

1 byte attacked at a time

Collection of data

Collection of data

Collection of data

Collection of data

Strategy

Strategy

- 3D visualization of traces (thanks to 3 components of the PCA)
- Selection of a model
- Attack on all bytes of the key

Strategy

3D visualization

Selection of a model

Prediction models algorithm

- SOM (Kohonen 2001)
- SVM (Cortes & Vapnik -1995)
- RF (Breiman 2001)

Feature selections algorithm

- Nosel
- Rank
- SOM (Kohonen 2001)
- PCA (Pearson 1901)

Strategy

Selection of a model

Models

- SOM
- SVM
- RF

Feature selections

- Nosel
- Rank
- SOM
- PCA

	7 th bit	6 th bit	5 th bit	4 th bit	3 rd bit	2 nd bit	1 st bit	1 byte
%	96.09	92.58	90.63	85.55	75.39	58.98	50	15.33

(estimated by the leave-one-out)

Strategy

Attack on all bytes of the key

Strategy

Attack on all bytes of the key

	7 th bit	6 th bit	5 th bit	4 th bit	3 rd bit	2 nd bit	1 st bit
1st byte	78.13	65.63	77.34	60.16	60.16	53.13	50.00
2nd byte	85.16	75.00	67.97	50.00	57.03	50.00	50.00
μ	86.66	76.47	66.89	59.54	56.90	51.79	51.40
σ	8.44	7.39	6.09	5.71	5.71	3.45	2.88

Template Based DPA vs RF/PCA

Template Based DPA/mRMR

- 5.80% of good answers
- 35 dimensions
- > 59 points: technique is not reliable
- Shrinkage estimation (Schäfer & Strimmer 2005) makes possible of > 59 but this has no remarkable effects in terms of accuracy

Template Based DPA vs RF/PCA

Template Based DPA vs RF/PCA

Number of guesses to do on average before finding the right key

- Template Based DPA/mRMR (on 1 byte): 21 keys
- RF/PCA (on 1 byte): 11 keys

Contributions

- Proposition of a new attack based on machine learning
- Implementation of the new attack on a real setting
- Better techniques of attack compared to template Based DPA

Future works

- Larger portions of the key
- Assessing the impact of the coded message on the prediction accuracy
- Varying the cryptographic device
- Varying the number of measurements during learning and validation process
- Adoption of specific learning techniques for the classification of time series
- Fusion of different measurements

Thank you

Thank you

Liran LERMAN (llerman@ulb.ac.be)

Gianluca Bontempi (gbonte@ulb.ac.be)

Olivier Markowitch (olivier.markowitch@ulb.ac.be)