
COSADE 2011 - Second International Workshop on Constructive Side-Channel Analysis and Secure Design

120

An Efficient Mitigation Method for Timing Side
Channels on the Web

Sebastian Schinzel�

University of Mannheim, Laboratory for Dependable Distributed Systems

1 Introduction

Research has shown that timing side channels exist in web applications [1, 3, 5]. An obvious,
but problematic, mitigation for timing attacks is to delay the execution time to the worst
case execution time, so that all requests have the same response time. On the upside, this
prevents timing attacks as there are no differences in the response time any more. On
the downside, this approach has a negative effect on performance, which may render the
approach useless for many practical systems.

In this extended abstract, we propose a new strategy to prevent timing attacks in web
applications with little impact on performance. Our approach offers a provable security
gain that can be freely traded for a performance decrease. We compare our approach to
other strategies using two characteristics: firstly the added cost for an attacker to perform
a side channel attack, and secondly the performance impact on the system.

The rest of this paper is organised as follows: In section 2, we describe timing side
channel attacks on the web and review existing research for timing side channel mitiga-
tion. Section 3 provides a formal system model for the timing side channels we aim to
mitigate. Section 4 compares existing timing side channel mitigation strategies with our
own approach.

2 Timing Side Channels on the Web

A web application is vulnerable of timing side channels if the application leaks secret
information in its response time behaviour. Take a login form as an example. The fact
whether a given user account is registered is confidential information in the context of this
application. On a failed login attempt, a web application should return the same error
message independently if the user name or the password is wrong. If it returns different
error messages, e.g. “Wrong user name” or “Wrong password”, then the attacker learns
from the error message if this user name belongs to a registered account. Even if the error
messages hide this fact, the application could still leak information by different response
times of login requests depending on whether the given user name exists.

Several authors researched techniques that can mitigate timing attacks on the web.
Kocher [4] notes that making all operations take exactly the same amount of time is diffi-
cult. That is because it requires knowledge about the worst case execution time (WCET),

� Sebastian Schinzel was supported by Deutsche Forschungsgemeinschaft (DFG) as part of SPP
1496 “Reliably Secure Software Systems”.

COSADE 2011 - Second International Workshop on Constructive Side-Channel Analysis and Secure Design

121

which is hard to estimate in non-real-time systems [6]. He states that adding a random
delay will increase the number of necessary measurements that the attacker has to per-
form. It will therefore increase the cost for an attacker. However, it does not completely
prevent timing leaks.

Bortz et al. conclude that fixing web server responses to a constant amount of time
is insufficient as chunked encoding may leak information through inter-chunk timings [1].
Instead, they propose to fix the inter-chunk timings to a fixed value n. That way, if n
is greater than the maximum time to prepare a chunk, then the measured timing will
leak no information. If n is smaller than the chunk-preparation time, the system does
leak information, but the attacker will get a lower resolution compared to a measurement
without artificial delay. The measurements are therefore harder to conduct for the attacker.
In their paper, they don’t mention the performance impact introduced by their mitigation
method.

Nagami et. al fix the execution time of only those processes that leak information
through a timing side channel in order to limit the performance impact to selected pro-
cesses [5]. As an example, they patched several web applications so that only the response
time of the login process is fixed. Their approach is reactive as they focus on the prevention
of already discovered side channels.

In the following, we formalise our model of side channel attacks against web applica-
tions.

3 System Model

In this paper, we analyse side channels that leak information about the existence of a
given value. An example for this model is the login form of a web application that leaks
information about the existence of a given user name through its timing behaviour.

We model such a process of a web application containing timing side channels as
a deterministic function f(U) → T . f takes a user-chosen value u ∈ U and returns a
deterministic timing delay t ∈ T . S ⊂ U is a subset of all existing values and considered to
be confidential. The following example illustrates the requirements that are necessary for
f to form a timing side channel. Let ua ∈ S match a secret value and ub /∈ S not match a
secret value. f forms a timing side channel iff (if and only if)

∀ua ∈ S, ub /∈ S : f(ua) �= f(ub)

We assume in our model that the attacker has perfect measurement conditions, i.e. there
is no measurement error.

To decode the information leaked in the side channel, the attacker needs to know at
least one u0 and its affiliation with S, i.e. the attacker knows if u0 ∈ S or u0 /∈ S. The
attacker then measures f(u0) = t0. Afterwards, he chooses a value u1 and measures the
timing t1. Depending on t0 = t1 or t0 �= t1, respectively, the attacker can infer whether
u1 ∈ S or u1 /∈ S. Table 1 denotes the possible conclusions the attacker can draw, e.g. if
u0 ∈ S and t0 = t1 then u1 ∈ S, etc.

In the following section, we use this model to formalise two existing strategies and
propose a new strategy.

2

COSADE 2011 - Second International Workshop on Constructive Side-Channel Analysis and Secure Design

122

t0 = t1 t0 �= t1

u0 ∈ S u1 ∈ S u1 /∈ S
u0 /∈ S u1 /∈ S u1 ∈ S

Table 1. The conclusions an attacker can draw about u1 from knowledge of u0 and comparing
t0 to t1.

4 Types of Mitigation

An intuitive approach to mitigate timing side channels is to hamper the attacker’s ability
to decode the side channel by adding an artificial delay to the execution time. We now
analyse several strategies to delay the execution time and determine their ability to prevent
timing attacks (cost for the attacker) versus their impact on system performance (cost for
the system).

4.1 Fixing the Response Time

An intuitive mitigation for timing side channels is to remove the differences in the timing
of responses [1, 3–5]. This can be done by delaying execution times t = f(u) until a fixed
time barrier tf is reached. Figure 1 depicts this mitigation strategy. The attacker will then
always measure tf . The added delay td is calculated by tf − t. Additional timing delays
are strictly additive and we have to assume that ∀t : t ≤ tf to make sure that all response
times are equal.

0

f(u∉S) f(u∈S)

f(u∉S) + td

f(u∈S) + td

p(u∉S) = 0.5
p(u∈S) = 0.5

T

tf

Fig. 1. Forcing all responses to a fixed response time prevents timing leaks but results in large
performance penalty.

Let ua ∈ S and ub /∈ S. As shown in section 3, a necessary condition for timing side
channels to exist is f(ua) �= f(ub). By fixing all response times to tf , we get f(ua) =
f(ub) = tf . Thus, the necessary condition for timing side channels to exist is violated and
the information leak is closed.

In real web applications, timing measurements are blurred significantly because of busy
network conditions. To prevent timing side channels in these systems tf needs to be at
least as long as the worst case execution time (WCET), i.e. tf = max (f(U)). Note that
the maximum response time of web applications on the Internet is usually much larger

3

COSADE 2011 - Second International Workshop on Constructive Side-Channel Analysis and Secure Design

123

than the average response time, because of its inherent highly skewed distribution [2].
Thus, degrading the system’s performance to WCET for all requests is not acceptable in
realistic systems. We therefore discard this strategy for further comparison.

4.2 Adding a Random Delay

We showed in section 3 that an attacker decodes a timing side channel by comparing the
response time t1 of a chosen value u1 with the timing t0 of a known value u0. To make
this decoding process more difficult for the attacker, one could add an additional random
delay tr to all response times [4]. tr ∈ T changes randomly for each response and is a
uniformly distributed and randomly chosen number in the range of 0 ≤ tr ≤ tmax.

0

f(u∉S) f(u∈S)

T

Measurements

f(u∉S)+tr f(u∈S)+tr

p(u∉S) = 1 p(u∈S) = 1

n

f(u∉S)+tmax f(u∈S)+tmax

Measurement Range

Fig. 2. Padding response times with a random delay forces the attacker to perform multiple
measurements to estimate f(u).

As a result, the attacker can only measure f(u) + tr and has to collect multiple values
in order to learn the distribution of tr and estimate the actual f(u). Figure 2 shows the
range of results that the attacker can measure. Given that the attacker conducts enough
measurements, he can calculate |(t0 + tr)− (t1 + tr)| which approximates |t0 − t1|. Thus,
by performing multiple measurements for the same u, the attacker can approximate f(u).
Decoding the timing side channel is therefore costlier for an attacker when a random delay
is included. The average performance reduction per request is tmax

2 .

4.3 Adding a Fixed and Unpredictable Delay

Our system model in section 3 shows that an attacker decodes a timing side channel by
comparing response times. As opposed to the random delay described in section 4.2, our
idea is not to hamper the attacker’s ability to measure t, but to limit the gained information
from the comparison of t0 = f(u0 ∈ S) and t1 = f(u1 /∈ S). We add a delay that is always
the same for a given u and thus can not be factored out by multiple measurements as it
is the case with a random delay. Formally, let g(U) → T be a deterministic function that
takes a user-chosen value u and transforms it into a delay tg

tg ∈ T : tmin ≤ tg ≤ tmax ∧ tmax > |f(u ∈ S)− f(u /∈ S)|

4

COSADE 2011 - Second International Workshop on Constructive Side-Channel Analysis and Secure Design

124

For multiple u, g returns uniformly distributed delays that are not predictable by an at-
tacker. Figure 3 introduces an algorithm for the function g. The algorithm builds around
a cryptographic hash function h that hashes u. In order to make the resulting hash un-
predictable for the attacker, we concatenate a secret key k to u before the hashing. We
then perform a modulus operation to reduce the hash to the range 0 ≤ tg < tmax. In
practice, this algorithm produces uniformly distributed delays if the length of the hash is
much larger than tmax.

1 func t i on g (u) :
2 k := { s e c r e t key unknown to the a t ta cke r }
3 t g := h(u , k) mod t max
4 s l e ep nano s e conds (t g)

Fig. 3. Pseudo code describing the implementation of function g.

0

t0 = f(u0 ∉ S) t1 = f(u1 ∈ S)

t0 + tg

t1 + tg

tmin

tmin

tmax

tmax

p(u0 ∉ S) = 1 p(u1 ∈ S) = 1p(u0 ∉ S) = 0.5
p(u1 ∈ S) = 0.5

Special case:
--> T(s=1) - T(s=0) > nmax - nmin (No Protection)

T

Measurement Range

Fig. 4. Adding an unpredictable and fixed delay to responses protects an adjustable share of
secret values from leaking through the side channel.

Figure 4 displays the three different areas of timing attack prevention. The left area
ranges from t0 to t1. All t in this range leak information because all t are derived from
t0 + tg, with 0 ≤ tg < t1 − t0. As t0 + tg < t1, any t in this area is derived from u0.

The middle area in figure 4 ranges from t1 to t0 + tmax. All t in this area are either
derived from t0 + tg, with t1 − t0 ≤ tg < tmax or t1 + tg, with 0 ≤ tg < t1 − t0. Any t in
this area has an equal probability to be derived from u0 or u1. Consequently, there is no
information leakage in this timing area as all t in this area are equally likely to be derived
from u0 or u1, respectively. Formally, this area violates the necessary condition of timing
side channels to exist as ∃ua ∈ S, ub ∈ S : f(ua) �= f(ub), which proves that there exists
no timing side channel in this area.

5

COSADE 2011 - Second International Workshop on Constructive Side-Channel Analysis and Secure Design

125

The right area in figure 4 ranges from t0 + tmax to t1 + tmax. Any t in this area leaks
information because it is derived from t1+tg with t1−t0 ≤ tg ≤ tmax. Any t in this timing
area is derived from u1 as t0 + tmax < t1 + tg.

Thus, it is desirable to increase the size of the middle area as much as possible. The
share a of all possible user-chosen values U that should be protected from timing leaks is
used to derive tmax, i.e.

tmax =
|t1 − t0|
1− a

+ tmin

As an example, an application needs to protect a = 80% of U from information leakage
through the timing side channel. tmin is set to 0ms and |t1 − t0| was measured to be 1ms.
The resulting tmax is 5ms. The average performance impact of g(U) is tmax

2 = 2.5ms.
We believe that our mitigation method is more performance efficient than fixing the

response time to WCET (see section 4.1) if the timing difference |t1−t0| is small compared
to the variance of the measurements.

5 Conclusion

In this extended abstract, we formalised our idea for a performance efficient mitigation
strategy for timing side channels in web applications. Our strategy works by delaying the
response time of web applications, whereby the delay depends on the user-chosen value
that was passed in the response. We showed that our strategy is guaranteed to protect a
portion of the secret values from leaking through the side channel. The size of the portion
is adjustable and can be traded with performance reduction.

In future work, we will implement our strategy in real-world web applications and val-
idate it empirically. We will also apply our method to web servers using chunked encoding
to mitigate the pitfalls described by Bortz et al. [1].

References

1. A. Bortz and D. Boneh. Exposing private information by timing web applications. In C. L.
Williamson, M. E. Zurko, P. F. Patel-Schneider, and P. J. Shenoy, editors, WWW, pages
621–628. ACM, 2007.

2. S. A. Crosby, D. S. Wallach, and R. H. Riedi. Opportunities and limits of remote timing
attacks. ACM Trans. Inf. Syst. Secur, 12(3), 2009.

3. E. W. Felten and M. A. Schneider. Timing attacks on web privacy. In SIGSAC: 7th ACM

Conference on Computer and Communications Security. ACM SIGSAC, 2000.
4. P. C. Kocher. Timing attacks on implementations of diffie-hellman, RSA, DSS, and other

systems. In CRYPTO: Proceedings of Crypto, 1996.
5. Y. Nagami, D. Miyamoto, H. Hazeyama, and Y. Kadobayashi. An independent evaluation of

web timing attack and its countermeasure. In Third International Conference an Availability,

Reliability and Security (ARES), pages 1319–1324. IEEE Computer Society, 2008.
6. R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat, C. Fer-

dinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschulat, and P. Sten-
ström. The worst-case execution-time problem—overview of methods and survey of tools.
ACM Transactions on Embedded Computing Systems, 7(3), Apr. 2008.

6

